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Abstract In this paper an eighth algebraic order predictor–corrector explicit four-step
method is studied. The main scope of this paper is to study the consequences of (1)
the vanishing of the phase-lag and its first, second, third and fourth derivatives and (2)
the high algebraic order on the efficiency of the new developed method. A theoretical
and computational study of the obtained method is also presented. More specifically,
the theoretical study of the new predictor–corrector method consists of:

– The development of the new predictor–corrector method, i.e. the definition of the
coefficients of the method in order its phase-lag and phase-lag’s first, second, third
and fourth derivatives to be vanished

– The computation of the local truncation error
– The comparative local truncation error analysis
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– The stability (interval of periodicity) analysis, using scalar test equation with fre-
quency different than the frequency of the scalar test equation for the phase-lag
analysis.

Finally, the computational study of the new predictor–corrector method consists of
the application of the new produced predictor–corrector explicit four-step method
to the numerical solution of the resonance problem of the radial time independent
Schrödinger equation.

Keywords Schrödinger equation · Multistep methods · Predictor–corrector
methods · Explicit methods · Interval of periodicity · P-stability · Phase-lag ·
Phase-fitted · Derivatives of the phase-lag

Mathematics Subject Classfication 65L05

1 Introduction

A new predictor–corrector explicit four-step method of eighth algebraic order with
vanished phase-lag and its first, second, third and fourth derivatives will be studied in
the present paper. The novelties of the new method are:

1. The new proposed method is of high algebraic order (eight algebraic order)
2. Optimal explicit four-step method is the basis of the predictor and the corrector of

the new scheme
3. The new method has vanished the phase-lag and its first, second, third and fourth

derivatives
4. The embedding form of the proposed predictor–corrector explicit four-step

method. It is easy for one to see that the left hand part of the method (combi-
nation of yn+ j , j = −2(1)2) is the same for the predictor and the corrector.

As we have described above, we will develop a new predictor–corrector high alge-
braic order method for the efficient numerical solution of problems with mathematical
models of the form of the one-dimensional time independent Schrödinger equation:

y′′(x) =
[
l(l + 1)/x2 + V (x) − k2

]
y(x), (1)

The mathematical model described above, includes the following functions and para-
meters:

– The function Y (x) = l(l + 1)/x2 + V (x) is called the effective potential. The
following relation is hold : Y (x) → 0 as x → ∞.

– k2 is a real number which denotes the energy,
– l is an integer number determined by user which denotes the angular momentum,
– V is a determined by user function denotes the potential.

The problem described in formula (1) is a boundary value one. Therefore, we need
two boundary conditions. The initial point (first boundary condition) is given by the
definition of the problem:
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y(0) = 0. (2)

The final point (second boundary condition), for large values of x , is defined using the
physical considerations.

The radial time independent Schrödinger equation and all the similar problems
belong to the category of the special second-order initial or boundary value problems
of the form:

y′′(x) = f (x, y(x)), (3)

with periodical and/or oscillating solutions.

Remark 1 The main characteristic of the models of the above problems is that they
represented by a system of second order ordinary differential equations of the form
(3) in which the first derivative y′ does not appear explicitly. We present below the
applied sciences which have problems with mathematical models which satisfy the
above characteristics:

– astronomy,
– astrophysics,
– quantum mechanics,
– quantum chemistry,
– celestial mechanics,
– electronics,
– physical chemistry,
– chemical physics, ..., etc

One case for more details in [1–4].

Remark 2 The aim and scope of the research which has done on the subject of the
efficient numerical solution of the above described problems is the construction of :

1. effective,
2. fast and,
3. reliable

algorithms. We note here that an extensive research has been done on this research
subject (see for example [5–108]).

The research on the above described subject whichwas done during the last decades
had as result the main classes of finite difference methods presented in Fig. 1.

In the present paper, we will study the case of predictor–corrector methods in which

– the predictor is an explicit four-step method and
– the corrector is the corresponding implicit four-step method (corresponding: the
implicit method with the same coefficients in the left hand side of the formula).

It is easy to see that this form facilitate the application of embedded schemes to
real problems.
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Fig. 1 Main classes of the finite difference methods developed in the last decades

The main idea is the elimination of the phase-lag and its derivatives in the whole
method (when the whole method is applied to the specific scalar test equation). The
study will examine how this procedure of vanishing of the phase-lag and its deriva-
tives of the predictor–corrector method affects the effectiveness of the final proposed
method.

The finally developed method will be compared with other well known methods of
the literature in order its efficiency to be studied.

Remark 3 The methods developed with the above mentioned methodology can be
applied efficiently to the following problems:

– problems with periodic solution and/or,
– problems with oscillating solution,
– problems the solutions of which contain the functions cos and sin
– problems the solutions of which contain combination of the the functions cos and
sin

The subjects of the research of the present paper are:

1. The computation of the coefficients of the new predictor and the new corrector
method in order to have
– the highest possible algebraic order ,
– vanished phase-lag ,
– vanished first derivative of the phase-lag ,
– vanished second derivative of the phase-lag ,
– vanished third derivative of the phase-lag ,
– vanished fourth derivative of the phase-lag ,

2. The investigation of the local truncation error (LTE). We will present the compar-
ative LTE analysis of the new produced predictor–corrector four-step method with
other methods of the same form.
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Fig. 2 Flowchart of the
presentation of the analysis of
the new proposed
predictor–corrector high
algebraic order method

3. The investigation of the stability with scalar test equation using frequency different
than the frequency of the scalar test equation for the phase-lag analysis.

4. The investigation of the efficiency of the new obtained predictor–corrector four-
step method using the approximate solution of the resonance problem of the radial
time independent Schrödinger equation.

Using the direct formula for the computation of the phase-lag for any 2m symmetric
multistep method which was developed by Simos et al. in [26] and [29], we will
compute the phase-lag and its derivatives.

The flowchart of the analysis for the new predictor–corrector method is presented
in Fig. 2.

A description of the bibliography on the research subject of the present paper is
presented in Sect. 2. In Sect. 3 we present the phase-lag analysis of symmetric 2m
symmetric methods. The construction of the new proposed explicit high algebraic
order predictor–corrector method is presented in Sect. 4. The LTE of the obtained
predictor–corrector method is computed in Sect. 5. In the same section we present
a comparative LTE analysis with other similar methods. In Sect. 6 we present the
stability analysis of the new obtained predictor–corrector method. We use scalar test
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equation with frequency different than the frequency of the scalar test equation for
the phase-lag analysis. Numerical results are presented in Sect. 7. Some remarks and
conclusions are finally presented in Sect. 8.

2 Description of the bibliography

A recent bibliography on the subject of this paper is presented in the present section:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta–Nyström type have been obtained in [5–12].

– In [13–18], exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [23–51].

– Symplectic integrators are investigated in [52–81].
– Exponentially and trigonometrically multistep methods have been produced in
[82–101].

– Nonlinear methods have been studied in [102,103]
– Review papers have been presented in [104–108]
– Special issues and Symposia in International Conferences have been developed
on this subject (see [109–112])

3 Phase-lag analysis of symmetric 2 m-step methods

The research area of this paper is the study of the approximate solution of the initial
or boundary value problem of the form:

y′′ = f (x, y), (4)

We will examine the special case of using a multistep method with 2m steps for
the numerical solution of the problem (4):

m∑
i=−m

ai yn+i = h2
m∑

i=−m

bi f (xn+i , yn+i ) (5)

where :

– 2m are the number of steps over the equally spaced intervals [x−i−1, xi+1], i =
0(1)m − 1, where {xi }m

i=−m ∈ [a, b]
– h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of integration
– |a0| + |b0| �= 0

Remark 4 If bm = 0 the method is explicit, otherwise it is implicit.

Remark 5 If the method is symmetric then

ai−m = am−i , bi−m = bm−i , i = 0(1)m (6)
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If we apply a symmetric 2m-step method [i.e. the method (5) with coefficients (6)]
to the scalar test equation

y′′ = −w2 y, (7)

the following difference equation is obtained

Am(v) yn+m + . . . + A1(v) yn+1

+A0(v) yn + A1(v) yn−1 + . . . + Am(v) yn−m = 0, (8)

where v = w h, h is the step length and A0(v), A1(v), . . ., Am(v) are polynomials of v.
The associated characteristic equation is given by:

Am(v) λm + . . . + A1(v) λ + A0(v) + A1(v) λ−1 + . . . + Am(v) λ−m = 0 (9)

Theorem 1 [26,29] The symmetric 2m-step method with characteristic equation
given by (9) has phase-lag order k and phase-lag constant c given by:

−c vk+2 + O
(
vk+4

)

= 2 Am (v) cos (m v) + . . . + 2 A j (v) cos ( j v) + . . . + A0 (v)

2m2 Am (v) + . . . + 2 j2 A j (v) + . . . + 2 A1 (v)
(10)

Remark 6 A direct algorithm for the calculation of the phase-lag of any symmetric
2m-step method is given by the formula (10).

Remark 7 For the method which will be studied in this paper—for the predictor–
corrector symmetric four-step method—the number m = 2 and the direct formula for
the calculation of the phase-lag is given by:

− c vk+2 + O
(
vk+4

)
= 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(11)

where k is the phase-lag order and c is the phase-lag constant.

4 The new proposed method

Let us consider the family of predictor–corrector explicit symmetric four-stepmethods
for the approximate solution of initial or boundary value problems of the form y′′ =
f (x, y):
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Fig. 3 Flowchart of the construction of any method of the family

q̄n+2 = −a1 qn+1 − a0 qn − a1 qn−1 − qn−2

+ h2
(

b1 q ′′
n+1 + b0 q ′′

n + b1 q ′′
n−1

)

qn+2 + a1 qn+1 + a0 qn + a1 qn−1 + qn−2

= h2
[

b4
(
q̄ ′′

n+2 + q ′′
n−2

) + b3
(
q ′′

n+1 + q ′′
n−1

) + b2 q ′′
n

]
, (12)

where

a1 = − 1

10
, b1 = 53

40
(13)

and the coefficient a0 and bi , i = 0, 2(1)4 are free parameters, h is the step size of
the integration , n is the number of steps, qn is the approximation of the solution on
the point xn , xn = x0 + n h and x0 is the initial value point.

The development of the new proposed method is presented in the flowchart of the
Fig. 3.

Our investigation for the method (12) is based on the above flowchart. Based on
this, we apply the newmethod (12) to the scalar test Eq. (7). This leads to the difference
Eq. (8) with m = 2 and A j (v) , j = 0, 1, 2 given by:
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A2 (v) = 1, A1 (v) = − 1

10
+ v2

(
b4

(
1

10
− 53 v2

40

)
+ b3

)

A0 (v) = a0 + v2
(

b4
(
−v2 b0 − a0

)
+ b2

)
(14)

Since our method (12) requests vanishing of the phase-lag and its first, second,
third and fourth derivatives, we obtain the following system of equations [using the
formulae (11) and (14)]:

Phase-lag = − T0
Tdenom

= 0 (15)

First derivative of the phase-lag = T1
T 2

denom

= 0 (16)

Second derivative of the phase-lag = T2
T 3

denom

= 0 (17)

Third derivative of the phase-lag = T3
T 4

denom

= 0 (18)

Fourth derivative of the phase-lag = T4
T 5

denom

= 0 (19)

where Tj , j = 0(1)4 and Tdenom are given in Supplement Material A.
Solving the above system of Eqs. (15)-(19) we obtain the coefficients of the new

predictor–corrector explicit four-step method:

a0 = −1

5

T5
T6

, b0 = T7
T8

, b2 = − T9
T10

,

b3 = −T11
T12

, b4 = −T13
T14

(20)

where Ti , i = 5(1)14 are given in Supplement Material B.
In order to avoid cancellations for small values of |w|, the following Taylor series

expansions should be used:

a0 = −9

5
+ 13789 v10

84672000
− 70241 v12

4694215680

+ 43110959 v14

59147117568000
− 44855753 v16

1761508701388800

+ 3432896953273 v18

11413783706083799040000
+ . . .

b0 = 3551

660
− 5115719 v2

5410152
+ 341628194735 v4

3104366858208

−3075605356003601 v6

636177900252565440
+ 1431158902436299327 v8

172565036741629082783232
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− 1736998190244626825946750241 v10

165325545178985074095039155328000

− 288368663906917437451971562755427 v12

360484944678352935532913420438545305600

− 177754406650170139178697201112374767 v14

2954967188517394683150397890018843579064320

− 638724227994963479339852006825013949619917 v16

169557199264003513877043091088437252104142307328000

− 7547520057608466866314894126326556941390397117 v18

41065058089749011025881066230708618087102225411768320000
+ . . .

b2 = 50247

18550
− 68945 v2

186984
+ 671268581 v4

12957991200
− 2129375747 v6

1632706891200

− 21023761746067 v8

26743738877856000
+ 1018146723119670539 v10

12602719508800861440000

− 77576393072619648371 v12

12068364201627704914944000
+ 6384411063739344974171 v14

15206138894050908192829440000

− 245987933083051581145244737 v16

12603273687278426135646439096320000

+ 7922351731596709036582333 v18

9396523577497524811192019681280000
+ . . .

b3 = 18303

37100
+ 13789 v2

70119
− 2046768223 v4

77747947200
+ 12865930787 v6

19592482694400

− 287691169643 v8

20057804158392000
+ 21259380677673491 v10

75616317052805168640000

+ 330519481480474067 v12

14482037041953245897932800
+ 114569746298038501 v14

60024232476516742866432000

+ 8578693764396575128199381 v16

75619642123670556813878634577920000

+ 475271857757080428886004347 v18

95280749075824901585487079568179200000
+ . . .

b4 = 759

7420
− 13789 v2

1121904
+ 412031 v4

971849340
− 17935261 v6

3918496538880

+ 17506267081 v8

64184973306854400
+ 11067156017123 v10

945203963160064608000

+ 8115873985421119 v12

14482037041953245897932800
+ 52046960272748797 v14

3649473334572217966279065600

− 96932302266564934061 v16

189049105309176392034696586444800

− 1991755371170787457351301 v18

19056149815164980317097415913635840000
+ . . . (21)
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Fig. 4 Behavior of the coefficients of the new proposed method given by [20] for several values of v = w h
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In Fig. 4 the behavior of the coefficients a0, b j , j = 0, 2(1)4 is presented
The finally proposed method is the predictor–corrector method (12) with the coef-

ficients given by (20)–(21).
The LTE of this new proposed method (mentioned as PC Meth8) is given by:

LT EPC Meth8 = 13789 h10

84672000

(
y(10)

n + 5w2 y(8)
n + 10w4 y(6)

n + 10w6 y(4)
n

+ 5w8 y(2)
n + w10 yn

)
+ O

(
h12

)
(22)

where y( j)
n is the j-th derivative of yn .

5 Comparative error analysis

In this section the following methods will be investigated :

5.1 Classical predictor–corrector explicit four-step method, i.e. the method [12]
with constant coefficients

LT EC L = 13789 h10

84672000
y(10)

n + O
(

h12
)

(23)

5.2 The predictor–corrector explicit four-step method with vanished phase-lag
and its first, second, third and fourth derivatives developed in Sect. 4

LT EPC Meth8 = 13789 h10

84672000

(
y(10)

n + 5w2 y(8)
n + 10w4 y(6)

n + 10w6 y(4)
n

+ 5w8 y(2)
n + w10 yn

)
+ O

(
h12

)
(24)

In the Fig. 5 we present the Flowchart of the algorithm on which we base our
comparative LTE Analysis.

The formulae which are presented in the algorithm which is described in flowchart
of the Fig. 5 and on which the computation of the new formulae of the LTE is based
are given by:

y(2)
n = (V (x) − Vc + G) y(x)

y(3)
n =

(
d

dx
g (x)

)
y (x) + (g (x) + G)

d

dx
y (x)
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y(4)
n =

(
d2

dx2
g (x)

)
y (x) + 2

(
d

dx
g (x)

)
d

dx
y (x)

+ (g (x) + G)2 y (x)

y(5)
n =

(
d3

dx3
g (x)

)
y (x) + 3

(
d2

dx2
g (x)

)
d

dx
y (x)

+ 4 (g (x) + G) y (x)
d

dx
g (x) + (g (x) + G)2

d

dx
y (x)

y(6)
n =

(
d4

dx4
g (x)

)
y (x) + 4

(
d3

dx3
g (x)

)
d

dx
y (x)

+ 7 (g (x) + G) y (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

y (x)

+ 6 (g (x) + G)

(
d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)3 y (x)

y(7)
n =

(
d5

dx5
g (x)

)
y (x) + 5

(
d4

dx4
g (x)

)
d

dx
y (x)

+11 (g (x) + G) y (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
y (x)

d2

dx2
g (x)

+13 (g (x) + G)

(
d

dx
y (x)

)
d2

dx2
g (x) + 10

(
d

dx
g (x)

)2 d

dx
y (x)

+ 9 (g (x) + G)2 y (x)
d

dx
g (x) + (g (x) + G)3

d

dx
y (x)

y(8)
n =

(
d6

dx6
g (x)

)
y (x) + 6

(
d5

dx5
g (x)

)
d

dx
y (x)

+ 16 (g (x) + G) y (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
y (x)

d3

dx3
g (x)

+ 24 (g (x) + G)

(
d

dx
y (x)

)
d3

dx3
g (x) + 15

(
d2

dx2
g (x)

)2

y (x)

+ 48

(
d

dx
g (x)

) (
d

dx
y (x)

)
d2

dx2
g (x) + 22 (g (x) + G)2 y (x)

d2

dx2
g (x)

+ 28 (g (x) + G) y (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
y (x)

)
d

dx
g (x) + (g (x) + G)4 y (x)

. . .

We will study two cases for the value of E :

– The Energy (E) bf is closed to the potential, i.e., G = Vc − E ≈ 0. Conse-
quently, there aren’t terms of the LTE which have non zero powers of G (i.e. G j ,
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Fig. 5 Flowchart of the algorithm for the computations on the comparative error analysis

j �= 0). Therefore, only the free of G terms of the formulae of the LTE exist.
Since the evaluated methods are of the same form it is easy for one to see that
the free of G terms of the methods are the same in both cases (of the classical
methods (methods with constant coefficients) and of the methods with vanished
the phase-lag and its derivatives). Consequently, the error for the two kind of
methods: (1) classical methods (methods with constant coefficients) and (2) meth-
ods with vanished the phase-lag and its derivatives, will be approximately the
same.

– For the quantity G we have: G � 0 or G 	 0. Then |G| is a large
number. Here the expressions of the formulae of the LTE are different for
the numerical methods of the same family [classical methods (methods with
constant coefficients) and (2) methods with vanished the phase-lag and its
derivatives].

The asymptotic expressions of theLTE (based on themethodology presented above)
are given by :

5.3 Classical method

LT EC L = h10
(
13789 y (x)

84672000

)
G5 + · · · + O

(
h12

)
(25)
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5.4 The predictor–corrector explicit four-step method with vanished phase-lag
and its first, second, third and fourth derivatives developed in Sect. 4

LT EPC Meth8 = h10

⎛
⎝13789

(
d4

dx4
g (x)

)
y (x)

5292000

⎞
⎠ G2 + · · · + O

(
h12

)
(26)

Based on the above analysis, we have the following theorem:

Theorem 2 The analysis presented above gives us the following conclusions:

– For the classical predictor–corrector explicit four-step method the error increases
as the fifth power of G.

– For the predictor–corrector explicit four-step method with vanished phase-lag
and its first, second, third and fourth derivatives developed in Sect. 4, the error
increases as the second power of G.

So, for the numerical solution of the time independent radial Schrödinger equation
the new proposed predictor–corrector explicit four-step method with vanished phase-
lag and its first, second, third and fourth derivatives developed in Sect. 4 is the most
efficient, from theoretical point of view, especially for large values of |G| = |Vc − E |.

6 Stability analysis

In Fig. 6 we present the flowchart of the algorithm which describes the procedure
for the sability analysis of the new proposed predictor–corrector high algebraic order
symmetric explicit four-step method.

We will investigate the new proposed predictor–corrector symmetric explicit four-
step method (12) with the coefficients given by (13) and (20).

If we apply the above described method to the scalar test equation:

y′′ = −z2 y (27)

we have the following difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (28)

where

A2 (s, v) = 1, A1 (s, v) = 1

10

T15
T16

A0 (s, v) = 1

5

T17
T16

(29)

where s = z h and Tk, k = 15(1)17 are given in Supplement Material C.

Remark 8 The frequency of the scalar test Eq. (27) for the stability analysis, z is
different than the frequency of the scalar test Eq. (7) for the phase-lag analysis, w, is
different than , i.e. z �= w.
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Fig. 6 Flowchart for the stability analysis of the new proposed predictor–corrector high algebraic order
symmetric explicit four-step method

There is an associated characteristic equation to the difference Eq. (28) which is :

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (30)

Definition 1 (see [19]) A symmetric 2 k-step method with the characteristic equation
given by (9) is said to have an interval of periodicity

(
0, v20

)
if, for all s ∈ (

0, s20
)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, · · · (31)

where ζ(s) is a real function of z h and s = z h .

Definition 2 (see [19]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 Amethod is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

1 Where S is a set of distinct points.
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Fig. 7 s −v plane of the predictor–corrector symmetric explicit four-step method [12] with the coefficients
given by [13, 20]

In Fig. 7, we present the s − v plane of the new proposed predictor–corrector four-
step method. The shadowed area of the the s − v region is the stable area, while the
white area is the unstable area.

Remark 9 The study of the stability of these category of methods requires the division
of the problems for which these methods can be applied into two categories:

– Problems where the frequency of the scalar test equation for the stability analysis
is not equal to the frequency of the scalar test equation for the phase-lag analysis
(i.e. z �= w)

– Problems where the frequency of the scalar test equation for the stability analysis
is equal to the frequency of the scalar test equation for the phase-lag analysis (i.e.
z = w)

The Schrödinger equation and related problems are belonged into the second cate-
gory of problems described above.

For the first category of problems we have to develop the s − v plane in order
to investigate the stability of the proposed method (see Fig. 7 for our new produced
predictor–corrector symmetric four-step method).

For the second category of problems we have to observe the surroundings of the
first diagonal of the s − v plane.
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Studying the second category of problems, i.e. studying the case where z = w

or s = v (i.e. seeing the surroundings of the first diagonal of the s − v plane), we
extract the result that the interval of periodicity of the newobtained predictor–corrector
symmetric four-step method developed in Sect. 4 is equal to: (0, 16).

From the above analysis we have the following theorem:

Theorem 3 The method produced in Sect. 4:

– is of predictor–corrector type
– is of eighth algebraic order,
– has the phase-lag and its first, second, third and fourth derivatives equal to zero
– has an interval of periodicity equals to: (0, 16) in the case where the frequency of

the scalar test equation for the phase-lag analysis is equal to the frequency of the
scalar test equation for the stability analysis

7 Numerical results

The approximate solution of the one-dimensional time-independent Schrödinger
Eq. (1) is used for our numerical experiments

Remark 10 Since the new obtained predictor–corrector symmetric four-step method
is belonging to the case of frequency dependent algorithms, it is easy for one to see
that the determination of the value of parameter w (frequency) is a necessity. This is
because it is necessary for the application of the developed method to the approximate
solution of the one-dimensional Schrödinger equation. For our problem and model
given by (1) the parameter w (frequency) is given by (for the case l = 0):

w =
√

|V (x) − k2| = √|V (x) − E | (32)

where V (x) is the potential and E is the energy.

7.1 Woods–Saxon potential

Since we use the approximate solution of the time-independent one-dimensional
Schrödinger Eq. (1) for our numerical experiments and since the mathematical model
of this equation uses a function, named potential, it is easy for one to see that the
definition of the potential is necessary in order to proceed in the programming of the
solution of this problem. For our numerical tests, we use the Woods–Saxon potential.
This potential can be written as

V (x) = u0

1 + y
− u0 y

a (1 + y)2
(33)

with y = exp
[

x−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

In Fig. 8 we present the Woods–Saxon potential.
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Fig. 8 The Woods–Saxon potential

In the literature several methodologies has been introduced for the determination
of the frequency w, which is necessary for the frequency dependent methods—see
begin of this section—(see [26] and references therein). The below described method
is used for our numerical tests (see for details [107]).

More specifically, in order to determine the frequencyw , the values of the potential
on some critical points are used. The critical points mentioned above are determined
from the study of the specific potential.

Remark 11 The above mentioned methodology is well known applied to some poten-
tials, such as the Woods–Saxon potential.

For the purpose of obtaining our numerical results, it is appropriate to choose w as
follows (see for details [1] and [82]):

w =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for x ∈ [0, 6.5 − 2h],√−37.5 + E, for x = 6.5 − h√−25 + E, for x = 6.5√−12.5 + E, for x = 6.5 + h√
E, for x ∈ [6.5 + 2h, 15]

(34)

For example, in the point of the integration region x = 6.5 − h, the value of w is
equal to:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration
region x = 6.5 − 3 h, the value of w is equal to:

√−50 + E , etc.
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7.2 One-dimensional (radial) Schrödinger equation: the resonance problem

Our numerical experiments are based on the approximation solution of the one-
dimensional (radial) time independent Schrödinger Eq. (1) with Woods–Saxon
potential (33).

The above mentioned problem is belonged to the second order boundary value
problems and has an infinite interval of integration. It is well known that in these cases
we have to approximate the infinite interval of integration by a finite one. For our
numerical experiments the integration interval x ∈ [0, 15] is considered. Additionally
for our numerical tests we use a large domain of energies, i.e., E ∈ [1, 1000].

Remark 12 In the case of positive energies, E = k2 the term l(l+1)
r2

decays much
slower that the potential.

Based on the above remark the radial Schrödinger equation effectively reduces to:

y′′ (x) +
(

k2 − l(l + 1)

x2

)
y (r) = 0 (35)

for x greater than some value X .
The above equation has linearly independent solutions kx jl (kx) and kxnl (kx),

where jl (kx) and nl (kx) are the spherical Bessel andNeumann functions respectively.
Thus, the solution of Eq. (1) (when x → ∞), has the asymptotic form

y (x) ≈ Akx jl (kx) − Bkrnl (kx)

≈ AC

[
sin

(
kx − lπ

2

)
+ tan dl cos

(
kx − lπ

2

)]
(36)

where δl is the phase shift that may be calculated from the formula

tan δl = p (r2) S (r1) − p (r1) S (r2)

p (r1) C (r1) − p (r2) C (r2)
(37)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand end
point of the interval of integration and r2 = r1−h) with S (r) = kx jl (kx) andC (x) =
−kxnl (kx). For the initial-value problems (the radial Schrödinger equation is treated
as an initial-value problem) we need y j , j = 0(1)3 before starting a four-stepmethod.
The initial condition defines the first value of y i.e. y0. Using high order Runge–Kutta–
Nyströmmethods(see [113,114])wedetermine the values yi , i = 1(1)3.Nowwehave
all the necessary initial values and we can compute at r2 of the asymptotic region the
phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either : (1) of finding the phase-shift δl or (2) of finding those E , for E ∈ [1, 1000],
at which δl = π

2 .
We solved the latter problem, known as the resonance problem.
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The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
(√

Ex
)
for large x . (38)

The positive eigenenergies of the Woods–Saxon potential resonance problem are
computed using:

– The eighth order multi-step method developed by Quinlan and Tremaine [20],
which is indicated as Method QT8.

– The tenth ordermulti-stepmethod developed byQuinlan andTremaine [20], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [20],
which is indicated as Method QT12.

– The fourth algebraic ordermethod ofChawla andRao [25]withminimal phase-lag,
which is indicated as Method MCR4.

– The exponentially-fitted method of Raptis and Allison [83], which is indicated as
Method RA.

– The hybrid sixth algebraic order method developed by Chawla and Rao [24] with
minimal phase-lag, which is indicated as Method MCR6.

– The classical form of the fourth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

– The phase-fitted method (Case 1) developed in [45], which is indicated as Method
NMPF1.

– The phase-fitted method (Case 2) developed in [45], which is indicated as Method
NMPF2.

– The method developed in [49] (Case 2), which is indicated as Method NMC2.
– The method developed in [49] (Case 1), which is indicated as Method NMC1.
– The new obtained method developed in Sect. 4, which is indicated as Method
NMPCPL4DV.

We compare the computed eigenenergies via the above mentioned methods with
reference values.3 In Figs. 9 and 10, we present themaximum absolute error Errmax =
|log10 (Err) | where

Err = |Ecalculated − Eaccurate| (39)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [24] with
small step size for the integration.
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Fig. 9 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
<0

Fig. 10 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
<0

8 Conclusions

In this paperwe investigated a predictor–corrector four-stepmethod of eighth algebraic
order. We obtained the above method together with with vanishing the phase-lag and
its first, second, third and fourth derivatives. We mention here that the investigation of
the method was done as one block method. We studied the effect of the vanishing of
the phase-lag and its derivatives on the computational effectiveness of the produced
method.

Additionally we investigated

– the comparative LTE analysis and

123



J Math Chem (2015) 53:1495–1522 1517

– the stability analysis (using scalar test equation with frequency different than the
frequency of the phase-lag analysis)

Finally, the computational effectiveness of the obtained method was studied via
numerical tests on the approximate solution of the resonance problem of the radial
time independent Schrödinger equation.

The proposed method is very effective on any problem with oscillating and/or
periodical solutions or problems with solutions contain the functions cos and sin or
any combination of them.

From the numerical experiments described above, we can make the following
remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao [25] with minimal phase-lag, which
is indicated as Method MCR4. Both the above mentioned methods are more effi-
cient than the exponentially-fitted method of Raptis and Allison [83], which is
indicated as Method RA. The method Method NMCL is more efficient than the
eighth algebraic order multistep method developed by Quinlan and Tremaine [20],
which is indicated as Method QT8, the phase-fitted method (Case 1) developed in
[45], which is indicated as Method NMPF1 and the phase-fitted method (Case 2)
developed in [45], which is indicated as Method NMPF1.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[20], which is indicated asMethod QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao [25] with minimal phase-lag, which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [20], which is indicated as
Method QT8. Finally, theMethod QT10 is more efficient than the classical form of
the sixth algebraic order four-step method developed in Sect. 4, which is indicated
as Method NMCL.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[20], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [20], which is indicated as
Method QT10

4. The method developed in [49] (Case 1), which is indicated as Method NMC1
is more efficient than the twelfth algebraic order multistep method developed by
Quinlan and Tremaine [20], which is indicated as Method QT12.

5. Finally, the predictor–corrector explicit four-step method of sixth algebraic order
with vanished phase-lag and its first, second, third and fourth derivatives (obtained
in Sect. 4), which is indicated as Method NMPCPL4DV, is the most efficient one.

All computations were carried out on a IBMPC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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